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Abstract The F.E. analysis of woven composite rein-

forcement forming is an alternative to geometrical draping

computation. It permits to account for mechanical behav-

iours of the fabric and static boundary conditions of the

process. In this paper, macroscopic forming simulations of

woven composite reinforcements are performed using finite

elements composed of woven cells, the mechanical

behaviour of which are computed by F.E. analyses at

mesoscale i.e. on the unit cell of the fabric. The objective is

to only calculate the relevant quantities in the woven finite

element. The in-plane biaxiale tensile behaviour and the

in-plane shear behaviour are obtained by 3D analyses of

the woven cell submitted respectively to tension and shear.

They need to take the specificities of the mechanical

behaviour of the yarn (made of thousand of fibres) into

account. Especially an objective derivative based on the

fibre rotation is used. These computations on the unit

woven cell have proved to be consistent with experimental

tests. An example of deep drawing of a square box using

the proposed approach is presented. Angles between warp

and weft directions are computed as well as wrinkles.

Introduction

Textile reinforcements of composites are especially

efficient in case of double curve geometries because of the

interlacing of warp and weft yarns. Because it is made of

woven yarns, the fabric can reach very large in-plane shear

strain. The fabric is also submitted to tensions but, due to

the large tensile stiffness, the associated axial strains are

usually small especially in the cases of classic composite

reinforcements made of glass, aramid or carbon. In the

objective of the development of composite forming simu-

lation codes, an important effort is currently made to model

and simulate the large deformations of textile reinforce-

ments. Actually this fabric forming is essential in textile

composite manufacturing. During the forming stage the

possible deformation modes of the composite are those of

the reinforcement because of the absence of cohesion of the

matrix. This one is not polymerised (in case of prepregs),

heated over the melting point (in case of thermoplastics) or

absent (in case of the first stage of LCM processes). A

composite forming simulation code has to determine the

conditions of the feasibility of a process without defect but

also to know the positions of the reinforcements after

shaping. These positions (directions and densities) strongly

condition the permeability of the reinforcement and thus

the filling of the resin in the case of a liquid moulding

process [1, 2]. In addition, the angles between warp and

weft yarns and the fibre densities have a large influence on

the mechanical behaviour of the final textile composite

structure.

The codes that are the most commonly used in industry

for fabric forming simulations, are based on geometrical

approaches (fishnet algorithms) [1, 3–5]. In these methods,

the knowledge of the shape on which the fabric is formed

and initial geometrical conditions leads to the positions of

the yarns on the final form. The length of the yarns is

constant and the rotation of warp and weft yarn at each

intersection is free. This leads to a local geodesic problem

that is generally non-linear but very small and the resolu-

tion is very fast. The computed shear angle can be
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compared to the locking angle of the fabric. These

approaches are fairly efficient especially in the case of hand

operated draping of classic fabrics or prepregs. Neverthe-

less they do not account neither for the mechanical

behaviour of the fabric nor for the loads on the boundary

that can be very important to achieve a correct draping [6].

In order to avoid these drawbacks, the fabric forming

can be simulates within a finite element approach [7–9].

This requires the knowledge and modelling of the

mechanical behaviour of woven reinforcements. These are

highly specific because of the internal structure of the

fabrics. It is a multi-scale problem. The macroscopic

behaviour is much dependent of the interactions of yarns at

meso-scale (scale of the woven unit cell) and at the micro-

scale (level of the fibres constituting yarns). Despite a lot of

works in the field, there is no widely accepted model that

describes accurately all the main aspects of fabric

mechanical behaviour [10]. A lot of the models are based

on the woven and multi-scale nature of the textile. Some

approaches are based on a discrete modelling of the fabric.

The yarns (or the fibres [11]) are assumed to be straight or

curved beams or truss connected by tensional and rota-

tional springs. If these approaches have been widely used

to analyse the mechanical behaviour of the unit woven cell

[12–15], in the objective of forming simulations, they have

also been extended to the discrete modelling of the whole

textile structure that is represented by a network of inter-

woven trusses or beams with different springs [16, 17]. The

global textile structure deformation can be computed if the

models used for local components are simple enough. This

is the limit of this approach that can account with difficulty

for the complexity of the woven cell behaviour. The

composition of the yarn made of many fibres and to the

weaving cannot be accurately described by straight trusses

and springs. An opposite alternative consists in considering

the fabric as an anisotropic continuum, the model of which

is obtained by homogenizing the mechanical behaviour of

the underlying meso-structure [8, 10, 18, 19]. These con-

tinuum models can be implemented in classic shell or

membrane finite elements. Nevertheless the identification

of the homogenized material parameters is not easy. The

main difficulty is due to the variation of the mechanical

behaviour when the fabric is strained and when, conse-

quently, the directions and the density of the yarns change.

In this paper, a mesoscopic analysis of the woven unit

cell is associated to a finite element assumption. Specific

elements are made of woven unit cells. Mesoscopic anal-

yses of the mechanical behaviour of these woven cells are

performed by 3D F.E. computations of the woven cell

possibly associated with experiments. This local behaviour

and the corresponding strain energy in the strain field of the

finite element gives the nodal interior loads. Only tensile

and in plane shear deformation energy are taken into

account. The bending energy of the woven reinforcement is

neglected because the yarns made of thousand of fibres the

diameter of which is very small (5–7 lm for carbon and

5–25 lm for glass).

The mesoscopic F.E. analyses of the woven unit cell are

presented. They are not standard computations because of

the composition of the yarn that is not a classic continuous

media. The results are compared to experiments. Then

from these analyses, the finite elements made of woven

cells are used for forming simulations.

Finite element made of woven cells

The element presented Fig. 1 is made of ncelle woven cells.

It is a four node element with classic bilinear interpolation

functions:

N1 ¼ 1

4
1� n2ð Þ 1� n1ð Þ N 2 ¼ 1

4
1� n2ð Þ 1þ n1ð Þ

N3 ¼ 1

4
1þ n2ð Þ 1þ n1ð Þ N 4 ¼ 1

4
1þ n2ð Þ 1� n1ð Þ ð2:1Þ

A three node element has also been developed based on

the same approach and linear interpolation function [6].

The natural coordinates of the element n1; n2 and conse-

quently the edges of the element follow the directions of

the yarns. It has also been shown that otherwise a locking

can appear due to the stiffness in the two yarn directions

that is very much larger than others [20]. Secondly, this

will lead to a better numerical efficiency.

The element is made of unit woven cells. The

mechanical behaviour of those woven cells will be analy-

sed at mesoscale in Section ‘‘Finite element analyses at the

mesoscopic level’’. Because the fabric reinforcement is

made of woven yarns that are themselves made up of

thousand of fibres, there are possible relative displacements

and only the tensile strain energy and the in-plane shear

strain energy are taken into account in the finite element.

The virtual work of interior loads for a woven cell in a

virtual displacement g can be written:

1 2

4

2

1

3

Unit woven cell ξ

ξ

Fig. 1 Bilinear finite element made of woven cells
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W cell
int gð Þ ¼ e11 gð ÞT 11 L1 þ e22 gð ÞT 22 L2 þ c gð Þ C ð2:2Þ

T11 and T22are the tension in warp and weft directions,

e11 gð Þ and e22 gð Þ are the axial strains in the warp and weft

directions in the virtual displacement field g. c (g) is the

virtual rotation angle between warp and weft directions and

C is the couple due to in plane shear in the unit cell.

The finite element approach presented in the present work

is based on an explicit scheme, consequently the nodal

elementary interior loads F e
int are the only needed quanti-

ties. They are given by the interior elementary virtual work

Wint
e which is the sum of the virtual work on each unit cell :

W e
intðgÞ ¼

Xncelle

p¼1

pe11 gð Þ pT 11 pL1 þ p e22 gð Þ pT 22 pL2

þ
Xncelle

p¼1

pc gð Þ pC ¼ gsðF e
intÞs

ð2:3Þ

The nodal index s varies from 1 to 12 in the case of the four

node quadrilateral.

Denoting ga the covariant material vectors such as

ga ¼ @x
@na

and ga the related contravariant vectors ( a and b
indexes take values 1 and 2), the strain interpolation

components Babs define the virtual strain components �eab

from the virtual displacement components:

�eaaðgÞ ¼ Baasgs and c gð Þ ¼ Bcsgs ð2:4Þ

with

Baas ¼
@Nk

@na
gað Þm k ¼ integer part of

sþ 2

3

� �

and m ¼ s� 3 k � 1ð Þ
ð2:5Þ

Bcs ¼
@Nk

@n1

cot gh
g1ð Þm
g1k k2

� g2ð Þm
sin h g1k k g2k k

" #

þ @Nk

@n2

cot gh
g2ð Þm
g2k k2

� g1ð Þm
sin h g1k k g2k k

" # ð2:6Þ

The nodal interior loads are related to tension in the yarns

and shear couple by:

F e
int

� �
s ¼

Xnt

p¼1

1

g1k k
pB11s

pT 11 þ
Xnc

p¼1

1

g2k k
pB22s

pT 22

þ
Xntnc

p¼1

pCpBcs

ð2:7Þ

Accounting for the bilinear interpolation, the summation

can be done on only four crossovers, the positions of which

depend on the warp and weft number of yarns (nc and nt).

Details of the calculations can be found in [21]. The nodal

interior load components are given explicitly without any

matrix multiplication, and without computing terms equal

to zero (due to zero stiffness). This is important with regard

to the numerical efficiency.

To make a finite element simulation of composite woven

reinforcement forming (macroscopic analyses) based on

the above approach, it is necessary to be able to calculate

the tensions T11 and T22 and the shear couple C for a given

strain field in the woven unit cell. It is assumed that the

tension do not depend on the shear angle and that the shear

couple do not depend on the axial strain i.e. T 11ðe11; e22Þ,
T 22ðe11; e22) and C ( c). In [22], biaxial tensile tests per-

formed for different angle between warp and weft yarns

have shown that the influence of this angle is small and can

be neglected. The second assumption (C only depending on

c) is probably less true [23, 24]. Nevetheless, all the

experimental results that are currently available give the

shear load in function of the shear angle without any

information on the tensions, so the assumption C( c) will be

made by default. The next section will have the objective to

determine the biaxial tensile behaviour T 11ðe11; e22Þ;
T 22ðe11; e22Þ and the in plane shear behaviour C( c) by 3D

F.E. analyses performed at the mesoscopic level i.e. on the

unit woven cell.

Finite element analyses at the mesoscopic level

Characteristics of the analysis

Virtual tests are performed at the mesoscopic level. 3D

finite elements analyses are made on a unit woven cell

(representing the periodicity of the fabric) under loading

[25, 26]. These computations give local results within the

material that are very difficult to obtain experimentally.

They also allow to test materials at the design stage i.e.

before their manufacture. Finally, they permit the simula-

tion of many tests that would be costly and difficult to

perform experimentally.

The analyses are not standard mainly because the yarn is

not a classic continuous material but is made of thousand of

fibres that can slide relatively. Nevertheless, although some

works have been proposed in this direction [11], it is dif-

ficult, and in practice impossible, to model each fibre for a

usual woven composite reinforcement (6000 fibres in the

case of a classic 2 · 2 twill of carbon). Consequently a

continuous approach must be used to model the yarns that

are meshed with 3D elements. This equivalent mechanical
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behaviour is very specific. The principal specificities of the

mesoscopic F.E. analysis are listed below:

(a) most stiffnesses (bending, shear) are very small in

comparison to tension stiffness in the fibres direction,

(b) the almost zero value of some stiffnesses (associated

to very small strain energies) leads to numerical

instabilities (zero energy modes) which must be

eliminated,

(c) the important differences between longitudinal and

transversal behaviours require to follow strictly the

fibre directions in order to give the mechanical

properties in a frame directed at each time by the

current fibre directions,

(d) the longitudinal yarn tensile behaviour must be

known,

(e) the yarn crushing (transverse behaviour of the yarn)

must be modelled efficiently,

(f) there are some geometrical non-linearities (undulation

changes, large angle variations between warp and weft

directions): the analysis must be performed at finite

strain,

(g) the contacts between yarns are modelled using a

master/slave technique with Coulomb friction

(h) the analysis is made for a minimal elementary pattern.

The boundary conditions must represent the fabric

periodicity and the possible pattern symmetries.

The very small stiffnesses in bending and shear (a)

can be modelled by an elastic orthotropic material, with

small transverse Young’s modulus (perpendicular to the

fibre direction) and very small shear modulus with

respect to the longitudinal Young’s modulus (fibre

direction). The longitudinal Young’s modulus is identi-

fied using a tension test on a single yarn. The transverse

Young’s modulus (e) is not constant. It is the result of

the transverse compaction of the fibre bundle. It is small

in the initial state, but increases as a function of trans-

verse and longitudinal strains. Therefore, the following

crushing has been choosen:

Es ¼ E0e
q
11 essj jrþEe ð3:1Þ

where s is equal to 2 or 3, 1 is the fibre direction, 2 and 3 the

transverse directions. Ee is the initial transverse modulus

(usually very small). E0, q and r are three material param-

eters. Because of the difficulty to perform a compression

test that is independent of the boundary conditions, these

constants have been identified by an equi-biaxial tension

test (see Fig. 4) coupled with an inverse method [25, 27].

Many other compaction models have been proposed, but

they usually do not take the longitudinal strain into account

[28, 29].

Very weak stiffnesses (close to zero) lead to zero

energy modes (b). These spurious modes are classic in

case finite elements using reduced integration of [30].

Some displacements fields (these spurious modes) are

possible without any strain energy because they do not

change the strain value at gauss points used in case of

reduced integration. In the present fabric 3D finite ele-

ment analyses, the zero energy modes are possible, not

because of reduced integration but because some mate-

rial rigidities are close to zero. The result is the same:

some displacements modes correspond to zero strain

energy and the computation is unstable. To avoid these

spurious modes, the finite elements with reduced inte-

gration use hourglass control [31, 32]: a stabilization

matrix is added to the element stiffness, based on some

orthogonality properties of the added fields, to remove

the spurious modes without perturbing the computation

result. These approaches have proved to be efficient in

the case of the present analysis.

Since displacements and strains are large, it is necessary

to work within a large strain theory (f). Because Young’s

moduli are very different in longitudinal and transverse

directions, it is important that the orthotropic axes corre-

spond to material directions during the analyses and

especially that the longitudinal direction where the rigidity

is high, strictly follows the fibres (c). In that goal, as it is

presented in next section, the yarn behaviour law is asso-

ciated with an objective derivative based on the rotation of

the fibre. This enables the fibre direction to be strictly

followed, unlike approaches usually developed in the finite

element codes that are based on average rotations of the

matter.

Hypoelastic model for fibrous materials

As it is usual in commercial finite element codes [33] the

material mechanic behaviour is an hypoelastic continuous

orthotropic model at large strain. The specificity here lies

in the use of the fibre rotation tensor D. It is used to define a

strain measure of the fibrous medium and to define the

evolution of the strong anisotropic direction that strictly

follows the fibre direction contrary to Jaumann corotational

formulation [34, 35] or Green Naghdi approach [35, 36]

that are usualy used in finite element codes [33]. The

rotations used in these cases (the polar rotation R for Green

Naghdi et the rotation of the corotational frame Q for

Jaumann) are average rotations of the matter in a given

point. They are not equal to the rotation of the fibre at this

point i.e. the rotation in a specific material direction. From

the initial orientation of the orthotropic axes j0
i (i = 1, 2 or

3), the fiber rotation D is used to compute the current

constitutive axes jt
i:
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jt
i ¼ D � j0

i : ð3:2Þ

Equation (3.2) leads to the set of formula (3.3) that

explicitly give the constitutive axes fjtg as functions of the

initial constitutive axes fj0g and the deformation gradient

F ([37]):

jt
1 ¼

F�e0
1

F�e0
1k k

jt
2 ¼ e0

2 � b2

1þb1
e0

1 þ jt
1

� �

jt
3 ¼ e0

3 � b3

1þb1
e0

1 þ jt
1

� �

with bk ¼ jt
1 � e0

k and bk 6¼ 1

8
>>>><

>>>>:

ð3:3Þ

The strong anisotropic direction remains aligned with

the fibre direction. The current constitutive tensor C is

obtained from the initial constitutive tensor 0C:

C ¼ R : 0C : RT with 0C ¼ 0Cijklj
0
i � j0

j � j0
k � j0

l

ð3:4Þ

R is the fourth order rotation tensor computed from second

order rotation tensor D:

Rijkl ¼ DikDjl: ð3:5Þ

Consequently, C is known:

C ¼ 0Cijklj
t
i � jt

j � jt
k � jt

l ð3:6Þ

and the hypoelastic constitutive law is:

rr ¼ C : D with rr ¼ D � d

dt
DT � r � D
� �

� DT ð3:7Þ

D is the strain rate tensor and rr is the objective

derivative of the Cauchy stress tensor with respect to the

rotation D. The cumulated tensorial strain tensor e and the

cauchy stress tensor r are such as:

e ¼ D �
Z t

0

DT � D � Ddt
� �

� DT

r ¼ D �
Z t

0

DT � C : Dð Þ � Ddt
� �

� DT
ð3:8Þ

It can be shown that Eq. (8) will always give a loga-

rithmic strain in the strong anisotropic direction and

ensures the summation of the stress increments along this

direction. The use of the fibre rotation tensor D for the

objective rotational derivative and the evolution laws as

defined above give a consistent approach for fibrous media

with one strong anisotropic direction as it is the case for the

yarns of the composite reinforcements that consist in a fibre

bundle. The presented approach has been implemented in

the ABAQUS code using the VUMAT routine [38]. In the

cases of analyses of the woven cells composed of woven

yarns, it has proved to be much more efficient than the use

of classic Green Naghdi or Jaumann approaches that lead

to too weak results because the fibre direction is not exactly

followed.

Mesoscopic F.E. analysis of a woven unit cell under

biaxial tension

Figure 2b shows the mesh (30000 d.o.f.) used for the F.E.

analyses of the elementary pattern of the 2 · 2 carbon twill

(Fig. 2a). The young modulus in the fiber direction is

E0=1.1·105 MPa and the crushing law parameters are

m = 1, n = 2. The set of analyses performed for different

warp-weft ratio give the tensile surface T 11ðe11; e22Þ;
or T 22ðe11; e22Þ (Fig. 3). The two surfaces are identical

because the fabric is (nearly) balanced. The tensile surface

show that the tensile curves T 11ðe11Þðe22 fixed) are clearly

non-linear at the beginning of the loading. These computed

tensile curves are compared to experiments for differents

warp strain/weft strain ratios denoted k. The experimental

biaxial tensile tests have been performed on cross shape

specimen (Fig. 4) [22]. The results are in correct agree-

ment. The crushing strain is important (45%) and is a main

Fig. 2 (a) 2·2 carbon twill. (b)

Mesh of the unit cell
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aspect of fabric biaxial tension (Fig. 5). It is because of this

crushing that the tensile curve is non-linear in case of equi-

biaxial tension (k = 1) (Fig. 6). Analyses of different wo-

ven unit cells (balanced and unbalanced) can be found in

[25, 26] and in case of knitted materials in [38, 39]

Mesoscopic F.E. analysis of a woven unit cell under

plane shearing

At macro scale, the fabric considered as a continuum is

submitted to a pure in plane shear. Nevertheless, it can be

shown by optical measurements on a single yarn (i.e. at

mesoscale) that the yarns are not sheared but that they only

rotate without internal strain before the shear angle locking

angle is reached (Fig. 7a) [23]. When this locking angle is

reached, the yarns are strained and especially laterally

compressed (Fig. 7b). The kinematics of the picture frame

are prescribed as boundary conditions on an elementary

Fig. 3 Tension surface: Warp (or weft) tension in function of warp

and weft axial strains

Fig. 5 Computed deformed shape and transverse logarithmic strain

for an equi-biaxial load

Fig. 4 Cross shape fabric specimen under biaxial tension test. (a)

Active woven part of the specimen

0
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200

250

300

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Strain (%)

L
oa

d 
(N

/y
ar

n)

Tests

Free warp

k=0.5

k=1

k=2

Yarn

F.E analysis 

Fig. 6 Comparison between 3D finite element analyses of the woven

cell under biaxial tension and biaxial tension experimental tests on

cross shape specimens
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cell, but the yarn sections must stay perpendicular to the

middle line before the locking angle. The result of an

implicit finite element analysis is presented in Fig. 8 for a

glass plain weave. It is compared with the experimental

result obtained by a picture frame test [23, 40, 41]. The

shear curve obtained by the F.E analysis is close to the

experimental curve, but the analysis is stopped beyond 45�
because of a lack of convergence. This is due to a problem

of contact management. An explicit approach should

probably allow to obtain the shear behaviour beyond the

locking angle.

Simulation of woven reinforcement forming

Using the fabric behaviour in biaxial tension T 11ðe11; e22Þ,
or T22ðe11; e22Þ determined as indicated in Section ‘‘Mes-

oscopic F.E. analysis of woven unit cell under biaxial

tension’’ and the in plane shear behaviour C( c) as indi-

cated in Section ‘‘Mesoscopic F.E. analysis of woven unit

cell plane shearing’’ in the element formulation presented

Section ‘‘Finite element made of woven cells’’, fabric

forming computations can be performed. The deep drawing

of a square box is analysed. This test is a standard

benchmark for sheet metal forming (the geometry of the

tools is shown Fig. 9). It has been proposed at Numisheet

93 conference [42]. Accounting for the strongly

non-developable geometry, this test is very severe espe-

cially for fabric forming because it asks very large angle

variations between warp and weft yarns in the radiuses of

the square box. If those radiuses are reduced, the shear

strains that are necessary to shape the part become larger

than the limit angle of the fabric. The forming of a fabric is

simulated with the approach described above. Figure 10

presents the rotation angles between warp and weft direc-

tions and the deformed shape. Because the simulation

concerns a forming process for which it is necessary to

exceed the shear limit angle some wrinkle appear. The

reason for these wrinkles is that they decrease the shear

angle and consequently the strain energy. This simulation

permits to know the minimum radius value necessary to

avoid wrinkles for a given bank holder pressure. It also

gives the values of angles between warp and weft yarns

after forming. These angles are necessary for resin injec-

tion analyses and also for structural analyses of the com-

posite part in service.

Fig. 7 Displacement field

within the yarn obtained by

optical measures. (a) Before the

shear locking angle. (b) Beyond

the shear locking angle
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Fig. 8 Comparison between 3D finite element analyses of the woven

cell under in plane shear and picture frame experimental tests
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Fig. 9 Square box deep drawing. Geometry of the tools
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Conclusions

A meso-macroscopic approach has been proposed for the

simulation of woven composite reinforcement forming.

The objective is to only compute the relevant quantities in

the finite element made of woven cell. The interior nodal

loads of the finite element are obtained from the strain field

and from the in-plane biaxiale tensile behaviour and the

in-plane shear behaviour. Those behaviours are computed

by mesoscopic 3D analyses of the woven cell submitted

respectively to tension and shear. These computations have

proved to be consistent with experimental tests. The F.E.

computations of the unit cell under shearing needs to be

improved to give the shear curve beyond the shear locking

angle. Some works are in progress at LaMCoS in order to

achieve this goal by an explicit F.E. approach. The forming

simulations made using the presented woven finite element

permit to know the warp and weft angle after shaping and to

describe possible wrinkles. The tensile energy mainly

directs the forming before the shear locking angle is reached.

Beyond this angle, the in plane shear stiffness is larger and

leads to find geometrical solutions out of plane (i.e.

wrinkles) in order to minimize the in-plane shear energy.
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élisation du comportement mécanique de renforts de composites

tissés’, Ph.D. Thesis, Université Paris 6
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